IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 2, FEBRUARY 1986

259

Accurate Solutions of Elliptical
and Cylindrical Striplines and Microstrip Lines

LING-RU ZENG aND YUNXIANG WANG

Abstract —By the transformation methods, elliptical and cylindrical
striplines and microstrip lines are theoretically analyzed. Rigorous deriva-
tions lead to the exact expressions of the characteristic impedance in
closed-form. Elliptical microstrip lines are explored for the first time. For
practical applications, elliptical and cylindrical striplines with finite thick-
ness are also analyzed.

I. INTRODUCTION

OR APPLICATIONS such as the transition adapter,

balun, slotted line, etc., a number of investigations on
elliptical and cylindrical striplines and cylindrical micro-
stirp lines have been reported. For cylindrical striplines
and microstrip lines with the dual series, two methods, i.e.,
the least-square and the simple integration methods, are
used to solve constants appearing in the series [1]. For
elliptical and cylindrical striplines, by separating the vari-
ables, the solution of the two-dimensional Laplace’s equa-
tion in orthogonal curvilinear elliptical coordinates is ex-
pressed in the form of a series [2]. Then the constants of
solution are determined by the modified residue calculas
technique (MRCT) developed by Mitta [3]. The variational
expression of lines can be obtained by Green’s function
method [4]. The derivations in these analyses, however, are
not rigorous, and the solutions are approximate because of
the series used. At the same time, elliptical microstrip lines
have not yet been explored. In this paper, four kinds of
transmission lines, i.e., elliptical and circular cylindrical
striplines and microstrip lines, are rigorously analyzed with
the conformal mapping technique [5]. By the transforma-
tion methods, the elliptical or circular cylindrical striplines
are transformed into asymmetric or symmetric planar
striplines, and the elliptical or circular cylindrical micro-
strip lines are transformed into planar microstrip lines,
which are readily analyzed. Based on these rigorous deriva-
tions, exact expressions of the characteristic impedance for
these transmission lines are presented. For practical appli-
cations, elliptical and cylindrical striplines with finite thick-
nesses greater than zero are also analyzed or the first time.

II. ELLIPTICAL AND CYLINDRICAL STRIPLINES

For a cross section of an elliptical stripline shown in Fig.
1, there are three confocal ellipses, S;, S,, and S,;. Among
them, two elliptical cylinders, S; and S,, are grounded.
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Their semi-major axes and semi-minor axes are a,, d,, ds,
b,, b,, and b;, respectively. An angle subtended by the
arc-strip at center is 2¢. The dimensional relationship
between the three ellipses is

¢ =af - b} = /a3 - b3 = a3 - 3. (1)

We shall assume that only TEM modes exist. In this case,
consider the transformation function

§‘=(zi zz—cz)/c

()
where

=&+ jn z=x+jy.
Using this transformation function, to can be shown that
ellipses S;, S,, and S, in the z plane are transformed into

circles S{, S;, and Sy in the { plane, respectively, as shown
in Fig. 2. Their radii are given by

n =\/(711+ bl)/(al —by)
r =\/("2 +b,)/(a,—b,)
r3 =\/(‘13 + b3)/(a3 - b3) .

In this way, the elliptical stripline has been transformed
into an cylindrical stripline with the arc-strip length

d = 2¢ M 7‘2 . (3)
With the transformation function
w
w=jln{+ E (4)
w=u+jo {=§+jn (5)

this cylindrical stripline is transformed into an asymmetric
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Fig. 2. Cross section of cylindrical stripline.

" planar stripline, as shown in Fig. 3. The relationships
between the two striplines are given by

vy;=lnr
v,=Inr,
vy=Inr,. (6)

Assuming that the asymmetric planar stripline has negligi-
ble thickness, the width of the center conductor is

W=2e¢. (7a)
The distance between the two ground plates is
H=In(r/r) (7v)

and the distance from the center conductor to the lower
ground plate is

h=In(r,/r,). (7c)

So far, the elliptical and cylindrical striplines have been
transformed into the asymmetric planar stripline, which
has been analyzed by conformal mapping in the literature
[6]. Its exact expression of the characteristic impedance is
given by

5 299767 K'(k)
ok K(k)

where K(k) is the complete elliptical integral of the first
kind, and k and k’ are the moduli. The moduli are given

(3)

by [7]
TK(k/K Ky _y |} K(k
= | f—— 2, 1< ,( ) o (9a)
eﬂK(k)/K’(k)_,_z K (k)
e ™K' R)/K(KY _o |’ K(k
k'=|——=|, 0< ,()<1 (9b)
oK' RV/KR) 4 ) K'(k)
k'=(1-k?)", 0<k<l.

The parameters of the elliptical stripline can be determined
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Fig. 3. Cross section of asymmetric planar stripline.

by the following set of equations:
K(k)

ST K0, ©) (102)
_ 1 (as+ b;)(a;— by)
B_E {(%‘bs)(‘h*‘bl)]
! k-1
A k12T Nk N)
1 (a,+b,)(a,— b;)
’ /2 " [ (a—by)(a, + b)) ] (10b)
C,_-l_ (1—’\)(1‘7_)\) 1 (a3+b3)(a1_bl)
- 2 AVA " (a3 - b;)(a; + by)

(10c)

) o

F(sin Yo, k) ~1-2l1 (a,+b,)(a, - by)
k() (@b (e b))

/1n[
v Y(1-A)(k~))
$= wAYA
| F(sin™1 8, k)~ ATI(X,sin™' B, k)]

1 [\/(1—7\)(1—1(!?2) ~ (k= M)(1-B2)

(a;+b3)(a; + by)
(a3~ by)(a, + by)

}}

2 | Ja-2)(1-kB2) + (k- 1)1~ 8%)
(a3 +b3)(a,—by)
o [ (ay—by)(ay +by) } (109
a=\A/k B=(1-4)/Vx. (10f)

. Here, F(sin~!a, k) and F(sin~!8, k) are the incomplete
elliptical integrals of the fist kind, [I(A, sin™'8, k) is the
incomplete elliptical integral of the third kind, and TI(A,
K(k), k) is the complete elliptical integral of the third
kind. The relative error of calculation with (9) is less than
4-10712, Similarly, the characteristic impedance of the
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cylindrical stripline can be obtained
29.9767 K'(k)

ZO:TW (11)\
__ Kk (12a)
= Ti(x, K(K), K) :
1 I
B?“‘(Z)
. k-1
'n[zx—k—uzu—x)(k—x)]
+jln —) (12b)
1/A=N(k+N) [
B iY 1“(71) (129
F(sin"la, k) r I3
_ [T
= WA\/X

[F(sin~' B, k)— ATL(A, sin~' 8, k)]

_ 1 [a-N0-kE) (-1 -7)

JA=2)(1-kB2) +{(k=M)(1- %)

r

‘In ( —3). (12¢)

rn
For a given Z,, substituting (8) or (11) into (9), the
modulus & can be calculated with (9). A can be obtained
from (10f) and (10d) or (12d). The constants 4, B, and C
are determined by (10a), (10b), (10c), or (12a), (12b), and
(12c), respectively. Finally, the angle subtended by arc-strip
2¢ is calculated from (10e) or (12¢); then the width of the
center conductor is readily obtained.

Through a similar rigorous derivation, it can be shown
that when the elliptical stripline satisfies

a,+b, _.] (a3 +by)(a, + by)
a,—b, (a;—b3)(a;— by)
it is transformed into a symmetric planar stripline, for
which the relatively exact expression of the characteristic
impedance has been given by Cohn [8]. In this case, the

relatively simple and exact expression of the characteristic
impedance is

29.9767 K(k)

N Ty

(13)

(14)

k= SeCh—{2(P'”/ln l: (as—bs)(a, +by)

(as+b;)(a,— by) ]} (15) ‘
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Fig. 4. Cross section of elliptical stripline with finite thickness.

In the same way, under the condition

rz=m (16)

the cylindrical stripline is transformed into a symmetric
planar stripline, and its relatively simple and exact expres-
sion of the characteristic impedance is

29.9767 K(k)

Zy= NEO) 17)

o
k =sech (pﬂ/ln(;—)}.

1

(18)

In order to simplify the calculations of (14) and (17), we
can use the following [7]:

K(k) 1, (1+ k)" + (ak)*
K'(k) 27 | (14 k)= (@k) |
%<k<1 (192)
Kk ./, 2(1+k')1/2+(4k’)1/4
® ) ar e =@y

1
0<k<—= (19
& ()

k'=(1-k*) (19¢)

From (13)—(18), it can be shown that when (13) and (16)
are met, calculations of (14) and (17) for the characteristic
impedance are not only simple but also relatively accurate,
which is valuable for practical applications.

III. ELLIPTICAL AND CYLINDRICAL STRIPLINES

WITH FINITE THICKNESS

The analyses mentioned above neglect the effect of strip
thickness. Elliptical and cylindrical striplines with finite
thickness greater than zero can be analyzed as follows.

A. Elliptical Striplines with Finite Thickness

In this case, the center conductor of elliptical stripline
consists of two lengths of arc-strip, subtending an angle 2¢
of ellipses S, and S;, as shown in Fig. 4. Four ellipses, S,
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Fig. 5. Cross section of symmetric planar stripline with finite thickness.

S,, S5, and S,, are confocal, and elliptical cylinders S; and
S, are grounded. The thickness of the center conductor is

(b3 - bz)-
With the transformation function

T
W= jarcch(z/c)+ >

W=u+jv z=x+jy

(20)
the elliptical stripline with finite thickness is transformed
into an asymmetric planar stripline with finite thickness. It
can be shown that the relationships between the two strip-
lines are

1

0= Eln [(01 + b1)/(“1 - bl)]
1

Uy = Eln[(az +by)/(a,—b,)]
1

U3= Eln[(a3 +b3)/(as— ba)]

Uy = ;ln [(ag+ by)/(as—b,)].
When this elliptical stripline satisfies
(a4+b,)(a;—by) _ (a,+b,)(a;—by) (21)
(ag—by)(as+b;)  (ay—by)(a;+b))
the corresponding asymmetric planar stripline with finite
thickness becomes a symmetric planar stripline, as shown

in Fig. 5. The thickness and width of its center conductor
are given by

1 (a3 +b;)(ay—b,)

t==In (22)
2" (ay—b3)(ay—b,)
W=2¢p. (23)
The distance between the two plates is given by
1 a,+b,)(a;—b
oLy (@atb)(a—by) (24)

2 (a,—by)(a,+b,)

For this situation, the exact expressions of the characteris-
tic impedance in the form of an implicit function have
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Fig. 6. Cross section of cylindrical stripline with finite thickness.

been reported by Waldron [9]. So
29.9767 K'(1/m)

Zo= Je, K(1/m)
lnlz(a3+b3)(az“b2)} ln{(a4+b4)(a1_bl):l
(a3—by)(a, +by) (ay—b,)(a,+by)
—[K(n')- RII(R’, n’)]

(25)

= R[O(R, )+ A=, )= K()] 26
=

) R[I;(:zz_ ;(zl):;xflm - 2;(2& K(nn))] (26b)

R=n:n22——n12 =11:::z w=yl-n> (26c)

where K and II are the complete elliptical integrals of the
first and third kinds, respectively.

Equation (25) and (26) are exact but difficult to calcu-
late. In practice, the approximate formulas with a relative
error of one percent are used [10]

7. 94.172 @)
e, x(W/H)+(1/7) P(x)
Py =T (282)
(x-1)"* 1-t/H
W/H>035(1-t/H) t/H<0.25. (28b)

B. Cylindrical Stripline with Finite Thickness

In this case, the center conductor of the cylindrical
stripline consists of the two lengths of arc-strip, subtending
an angle 2¢ of cylinders S, and S, as shown in Fig. 6. The
thickness of its center conductor is (r; — r,).

With the transformation function (eq. (4)), this cylin-
drical stripline is transformed into an asymmetric planar
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Fig. 7. Cross section of elliptical microstrip line.

stripline with finite thickness. When this cylindrical strip-
line satisfies

(29)
the asymmetric planar stripline becomes a symmeétric planar
stripline with finite thickness, which is the same as shown
in Fig. 5. The thickness and width of its center conductor
are

r4'r1= 7‘2'7'3

(30)
(31)

t=1n(r;/1)
W=2¢p.

The distance between the two plates is
H=In(r,/r). (32)

Similarly, the exact expressions of the characteristic imped-
ance for cylindrical striplines are given by

. 29.9767K'(1/m)
O e, K(1/m)

(33)

In(r;/r,) - —[K(n’) - RII(R’, n)]
In(r,/r,) R[I(R, n)+II(1-m?, n')— K(n")]
(34a)
29 _ K(n)=(1-n*/m*)I(n*/m?, n)
In(r,/r,) R[IL(R, n)+TI(1-m?, n")— K(n')]"
(34b)

In order to simplify the calculations, (30)-(32) can be
substituted into (27) and (28). Then the obtained results
have the relative error of order of one percent.

IV. ELLIPTICAL AND CYLINDRICAL
MICROSTRIP LINES

A cross section of an elliptical microstrip line is shown in
Fig. 7. The angle subtended by its arc-strip at the center is
29, and the elliptical cylinder S; is grounded. ¢, is the
relative dielectric constant of the substrate.

For this transmission line, the same method as men-
tioned above can be used. Assuming that only TEM modes
exist, with the transformation function (eq. (2)), ellipses S;
and S, in the z plane are transformed into circles S{ and
S; in the ¢ plane, as shown in Fig. 8. The radii of circles

1

/\r;-— 'f,_ Plane
|2
/ \\
/ 6r\\
|
\ IR
\ O\ /
SN _ //
Fig. 8. Cross section of cylindrical microstrip line.
are
r=y(a;+b;)/(a;~by) (352)
and ‘
’2=\/(‘12+b2)/(‘12"b2)- (35b).

So the elliptical microstrip line has been transformed into
an cylindrical microstrip line with the width of its center
conductor

(36)

With the transformation function (eq. (4)), the cylindrical
microstrip line is transformed into a planar microstrip line
as shown in Fig. 9. The relationships between the two
transmission lines are as follows:

d=2opr,.

(37a)
(37b)
For the planar microstrip line, the width of its center
conductor is

W=2¢ (38)

and the distance between its center conductor and ground
plate, i.e., the thickness of its substrate, is given by

h=1n(r,/r,). (39)
With the method proposed by Wheeler [11}, its relatively
exact expressions of characteristic impedance can be ob-

tained as follows.
1) For Narrow Strips:

a,+by)(a,— b,
{4¢/ln[zaz_bzggal+b3]} <!

. 376.687 {ln(zln[(a2+b2)(al—bl)})
0 ”\/W 14 (a;—by)(a; +b,)
1 (ay+by)(a, = by) |\’
+3—2—(4¢/ln[(az_b2)(‘11+b1)]

1/e.—1 177_{_114
T2l +1 "2 e,nvr '

v;=1In r

02 =].n r2.

(40)
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2) For Wide Strips:

(ay+b,)(a;— by)
{4(1) ln[("z_bz)(al+b1) }} >

376.687 (ay+b,)(a,— by)
Zo= 2/e, 2e n[(”z_bz)(aﬁ'bl)}

e, —1
+0.441+0.082| —

€

r

e, +1
+ ) 1.451
e,
a,+b -b B
+In| 29 ln[( LG 1)}+0.94 (41)
(az—bz)(a1+b1)

e, —1

and the effective dielectrical constant of its substrate
e, +1
= +
) 2
{ 5 [(az+b2)(al_bl)

e (ay~by)(a; + by) }}

29
In the same way, the characteristic impedance of cylin-
drical microstrip lines can be calculated as follows.
1) For Narrow Strips:

[2¢/In(r,/r)] <1

~1/2

(42)

7 376.687 | 4l (rz)

o my2(e, +1) ! P 8 £t
N 1 10 /1 n\P 1fe -1
2%/ M H) | T2 et

nTs il 43
"2 €, ik (43)
2) For Wide Strips:
[2¢/In(r,/7)] >1
z 376.687 | r, 0.441
=— =] +0.
0 2‘/; ¢/ n .
+o0s2| )42
. +
€2 2me,
ry -
-[1.451+In| ¢ ln(—— +0.94 (44)
I

and the effective dielectric constant of its substrate

[1+ %m(%)]_w. (45)

€1

€, +1
~ +
€= 2
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Fig. 9. Cross section of planar microstrip line.

The relative error of the calculations with (42) and (45) is
less than one percent.

V. CONCLUSIONS

In the preceding sections, elliptical and cylindrical strip-
lines are rigorously transformed into asymmetric planar
striplines and the analysis leads to exact expressions for the
characteristic impedance (eqgs. (8) and (11)). For the par-
ticular cases, the derived expressions (egs. (14), (15), (17),
and (18)) are both accurate and simple for calculating the
characteristic impedance, which will be, therefore, of prac-
tical interest. In the case of strip thickness greater than
zero, the corresponding expressions are presented. The
derived formulas of the characteristic impedance for ellipti-
eal and cylindrical microstrip lines are not only simple to
calculate, but also relatively accurate.
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