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Accurate Solutions of Elliptical
and Cylindrical Striplines and Microstrip Lines

LING-RU ZENG AND YUNXIANG WANG

Abstract —By the transformation methods, elffpticaf and cylindrical

striplines and microstrfp lines are theoreticsdly analyzed. Rlgorons deriva-

tions lead to the exact expressions of the characteristic impedance in

closed-form. Elliptical microstrip lines are explored for the first time. For

practical applications, elliptical and cylindrical striplines with finite thick-

ness are also anafyzed.

I. INTRODUCTION

F OR APPLICATIONS such as the transition adapter,

balun, slotted line, etc., a number of investigations on

elliptical and cylindrical striplines and cylindrical rnicro-

stirp lines have been reported. For cylindrical striplines

and microstrip lines with the dual series, two methods, i.e.,

the least-square and the simple integration methods, are

used to solve constants appearing in the series [1]. For

elliptical and cylindrical striplines, by separating the vari-

ables, the solution of the two-dimensional Laplace’s equa-

tion in orthogonal curvilinear elliptical coordinates is ex-

pressed in the form of a series [2]. Then the constants of

solution are determined by the modified residue calculas

technique (MRCT) developed by Mitta [3]. The variational

expression of lines can be obtained by Green’s function

method [4]. The derivations in these analyses, however, are

not rigorous, and the solutions are approximate because of

the series used. At the same time, elliptical microstrip lines

have not yet been explored. In this paper, four kinds of

transmission lines, i.e., elliptical and circular cylindrical

striplines and rnicrostrip lines, are rigorously analyzed with

the conformal mapping technique [5]. By the transforma-

tion methods, the elliptical or circular cylindrical striplines

are transformed into asymmetric or symmetric planar

striplines, and the elliptical or circular cylindrical micro-

strip lines are transformed into planar microstrip lines,

which are readily analyzed. Based on these rigorous deriva-

tions, exact expressions of the characteristic impedance for

these transmission lines are presented. For practical appli-

cations, elliptical and cylindrical striplines with finite thick-

nesses greater than zero are also analyzed or the first time.

II. ELLIPTICAL AND CYLINDRICAL STRIPLINES

For a cross section of an elliptical stripline shown in Fig.

1, there are three confocal ellipses, 111, S2, and S3. Among

them, two elliptical cylinders, SI and S3, are grounded.
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Their semi-major axes and semi-minor axes are al, az, a3,
bl, bz, and b3, respectively. An angle subtended by the

arc-strip at center is 2rp. The dimensional relationship

between the three ellipses is

c={~=/~=/m (1)

We shall assume that only TEM modes exist. In this case,

consider the transformation function

(2)

where

{=t+. h Z=x+j’.

Using this transformation function, to can be shown that

ellipses Sl, S2, and S3 in the z plane are transformed into

circles S{, S;, and S< in the ~ plane, respectively, as shown

in Fig. 2. Their radii are given by

rl= (al+ bl)/(al–bl)

‘1r2 = (a2+ b2)/(a2– b2)

r3= (a3+b~)/(a~–bq) .

In this way, the elliptical stripline has been transformed

into an cy~ndrical st~pline with the arc-strip length

d=2rp. r2. (3)

With the transformation function

w=jlnf+~ (4)

W=u+jo {= Cg+jTl (5)

this cylindrical stripline is transformed into an asymmetric
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Fig. 2. Cross section of cylindrical stripline.

planar stripline, as shown in Fig. 3. The relationships

between the two striplines are given by

VI = In rl

Vz = in r2

u3=lnr3. (6)

Assuming that the asymmetric planar stripline has negligi-

ble thickness, the width of the center conductor is

w= 29. (7a)

The distance between the two ground plates is

ll=ln(r3/rl) (7b)

and the distance from the center conductor to the lower

ground plate is

h=ln(r2/rl). (7C)

So far, the elliptical and cylindrical striplines have been

transformed into the asymmetric planar stripline, which

has been analyzed by conformal mapping in the literature

[6]. Its exact expression of the characteristic impedance is

given by

29.976T K’(k)
Zo= —

&, K(k)
(8)

where K(k) is the complete elliptical integral of the first

kind, and k and k’ are the moduli. The moduli are given

by [7]

“=[::3 “++”“b)
k’= (1– k2)”2, O<k<l.

The parameters of the elliptical stripline can be determined

Fig. 3. Cross section of asymmetric planar stripline.

by the following set of equations:

K(k)

‘= II(A, K(k), k)

[

(a, +b,)(al-bl)
B= -&In

(a, -b,)(al+bl) 1
[

k–1

‘ln 2A-k -1+2~(1-A)(k-A) 1
[

1 (a, +b,)(al - b,)

+ jZ1n (a, - b2)(a1+ bl) 1

(lOa)

(lOb)

(1OC)

F(sin -%, k)

{[

(a, +b,)(al-bl)

K(k)
==1-2 In

(fz, -ll,)(a, +bl) 1
/[

(a, +b,)(al+bl)

ln (a, -b,)(al+bl) 1}(l”d)

.[F(.sin-’/3, k)-AII(A,sin-’fl, k)]

[i

(1- A)(l-k/32) -~(k -A)(l-~2)
–&ln

(1- A)(l- k/32) +~(k-A)(l-~2) II
[

In ((23+/)3)((21-bl)

(a, - b,)(al+bl) 1 (lOe)

/?=(l-A)/fi. (lOf)

Here, F( sin-1 a, k) and F’( sin– 1~, k) are the incomplete
elliptical integrals of the fist kind, II(A, sin-19, k) is the

incomplete elliptical integral of the third kind, and II(X,

K(k), k) is the complete elliptical integral of the third

kind. The relative error of calculation with (9) is less than

4.10-12. Similarly, the characteristic impedance of the
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cylindrical strirdine can be obtained 29.,.

q)=

For

1

29.976T K’(k)

‘0= & ~
(11)

K(k)

‘= II(A, K(k), k)
(12a)

()
B=&ln 3

rl

[

k–l

“ln 2A-k -1+2~(1-A)(k– A)
1

()+jln z (12b)
rl

~=_~~(l–A)(k+h) r,

()

‘(s:i;’k)f~zll”(i);’n(:)ld
r(l--A) (k-A)

ITAG

.[F(sin-l~, k)-AII(A, sin-’~, k)]

1. ~~(1-~)(1-k~’) -i(k-~)(1-~’) 11

Fig. 4. Cross section of elliptical stnpline with finite thickness.
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In the same way, under the condition

Fr2 = rl ry (16)

the cylindrical stripline is transformed into a symmetric

planar stripline, and its relatively simple and exact expres-

sion of the characteristic impedance is

z = 29.976r K(k)

0 & K’(k)

k=sech[rpr/ln(~)].

(17)

(18)

In order to simplify the calculations of (14) and (17), we

can use the following [7]:

-q(w-w +Fm-=m]l K(k) >,* Zc+:)’’’+w”

()
K’(k) = 27r

[ 1(l+k)l’’2-(4k)’”4 ‘
.ln 3 . (12e)

rl 1
—<k<l (19a)

a given 2., substituting (8) or (11) into (9), the o

(1+ k’)1’”+ (4k’)114 12(1+ k’)’’’(4k4)’4’/4 ‘

modulus k can be calculated with (9). X can be obtained

from (lOf) and (lOd) or (12d). The constants A, B, and C K(k)

/

—=2I7 in
are determined by (lOa), (lOb), (1OC), or (12a), (12b), and K’(k)
(12c), respectively. Finally, the angle subtended by arc-strip

2cp is calculated from (lOe) or (12e); then the width of the

center conductor is readily obtained.

Through a similar rigorous derivation, it can be shown

that when the elliptical stripline satisfies

–=i’ln%n ’13)
a2 + b2

a2 – b2

it is transformed into a symmetric planar stripline, for

which the relatively exact expression of the characteristic

impedance has been given by Cohn [8], In this case, the

relatively simple and exact expression of the characteristic

impedance is

z = 29.976n K(k)

0 & K’(k)
(14)

.{ [

(a, +b,)(al-bl)
k = sech 2rp~/in 1)(a, -b,)(al+bl) “

(15)

k’= (1– k’)1”. (19C)

From (13)-(18), it can be shown that when (13) and (16)

are met, calculations of (14) and (17) for the characteristic

impedance are not only simple but also relatively accurate,

which is valuable for practical applications.

III. ELLIPTICAL AND CYLINDRICAL STRIPLINES

WITH FINITE THICKNESS

The analyses mentioned above neglect the effect of strip

thickness. Elliptical and cylindrical striplines with finite

thickness greater than zero can be analyzed as follows.

A. Elliptical Striplines with Finite Thickness

In this case, the center conductor of elliptical stripline

consists of two lengths of arc-strip, subtending an angle 29
of ellipses S2 and S3, as shown in Fig. 4. Four ellipses, S1,
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Fig. 5. Cross section of symmetric planar stripline with finite thickness.

S2, S3, and Sa, are confocal, and elliptical cylinders SI and

S4 are grounded. The thickness of the center conductor is

(b, – b,).
With the transformation function

W= jarc ch(z/c) + ~

W=u+jv z=x+jy (20)

the elliptical stripline with finite thickness is transformed

into an asymmetric planar stripline with finite thickness. It

can be shown that the relationships between the two strip-

lines are

VI= ~ln[(al+bl)/(al– bl)]

V2= ~ln[(az+ b2)/(az – bz)]

v3=~ln[(a3+b3)/(a3–b3)]
v4=~ln[(a4 +b4)/(a4–bd)].

When this elliptical stripline satisfies

(a, +b,)(a3-b3) _ (a, +b,)(al-bl) ~21)

(a4-b,)(a3+b3) - (a2-b2)(al+bl)

the corresponding asymmetric planar stripline with finite

thickness becomes a symmetric planar stripline, as shown

in Fig. 5. The thickness and width of its center conductor

are given by

1 (a3+b3)(a, -b,)
t=–in

2 (a3–b3)(az–bz)
(22)

w= 29. (23)

The distance between the two plates is given by

~= ~ln (a, +b,)(al-bl)

2 (ad–bA)(al+bl) “
(24)

For this situation, the exact expressions of the characteris-

tic impedance in the form of an implicit function have

Fig. 6. Cross section of cylindrical stripline wth finite thickness.

been reported by Waldron [9]. So

29.9767 K’(l/m)

‘0= F K(l/rn)
(25)

in
(a3+b,)(a, -b2) 1/[In(a. +b,)(al-bl)

(a, -b,)(a2+ b,) (a, -b,)(al+bl)

- [K(n’)-lm(lv, n’)]—
– R[rI(R’, n)+rf(l-lnz, #)- K(rr’)]

(26a)

/[

(a, +bA)(al-bl)
4rf in

(a. -b,)(al+bl) I
K(n)–(l– n2/m2)H(n2/m2, n)

= R[rI(R’, n)+rI(l-nz2, n’)– K(n’)]
(26b)

m2-n2 l–n2
R= R’= ~ n’=~~ (26c)

m2–1

where K and II are the complete elliptical integrals of the

first and third kinds, respectively.
Equation (25) and (26) are exact but difficult to calcu-

late. In practice, the approximate formulas with a relative

error of one percent are used [10]

94.172
20=

&x(w/H)+(l/7r)P(x)
(27)

(X+l)’+l 1
P(x) = in

(X-l) ’-l ‘= l-~,~
(28a)

W/H> 0.35(1– t/H) t/H< 0.25. (28b)

B. Cylindrical Stripline with Finite Thickness

In this case, the center conductor of the cylindrical

stripline consists of the two lengths of arc-strip, subtending

an angle 2rp of cylinders S2 and S3, as shown in Fig. 6. The

thickness of its center conductor is (r~ – rz).
With the transformation function (eq. (4)), this cylin-

drical stripline is transformed into an asymmetric planar
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Fig. 7. Cross section of elliptical microstrip line.

stripline with finite thicknkss. When this cylindrical strip-

line satisfies

r4. rl=rz. r3 (29)

the asymmetric planar stripline becomes a symmetric planar

stripline with finite thickness, which is the same as shown

in Fig. 5. The thickness and width of its center conductor

are

t= lil(r3/r2) (30)

w= 2q. (31)

The distance between the two plates is

H=ln(rd/rl). (32)

Similarly, the exact expressions of the characteristic imped-

ance for cylindrical striplines are given by

29.976 rK’(1/m)

‘0= F K(l/rn)
(33)

ln(r3/rz) - [K(n’)-RII(R’, n)]

ln(rA/rl) = RIII(R’, rz)+ll(l-mz, n’)– K(n’)]

(34a)

2rp K(rz)-(1– n2/rn2)l_f(n2/m2, n)

ln(rd/rl) = RIII(R’, n)+ II(l-m2, n’)– K(n’)] “

(34b)

In order to simplify the calculations, (30)-(32) can be

substituted into (27) and (28). Then the obtained results

have the relative error of order of one percent.

IV. ELLIPTICAL AND CYLINDRICAL

MICROSTRIP LINES

A cross section of an elliptical microstrip line is shown in

Fig. 7. The angle subtended by its arc-strip at the center is

29, and the elliptical cylinder S1 is grounded. t, is the

relative dielectric constant of the substrate.

For this transmission line, the same method as men-

tioned above can be used. Assuming that only TEM modes

exist, with the transformation function (eq. (2)), ellipses S1

and S2 in the z plane are transformed into circles S{ and

S; in the { plane, as shown in Fig. 8. The radii of circles

are

and

Fig. 8. Cross section of cylindrical microstrip line.

rl= (al+ bl)/(al– bl) (35a)

r2= (a2+ bz)/(a2– b2) . (35b).

So the elliptical microstrip line has been transformed into

an cylindrical microstrip line with the width of its center

conductor

d = 2qm2. (36)

With the transformation function (eq. (4)), the cylindrical

microstrip line is transformed into a planar microstrip line

as shown in Fig. 9. The relationships between the two

transmission lines are as follows:

U1=ln rl (37a)

v2=ln r2. (37b)

For the planar microstrip line, the width of its center

conductor is

w=2fp , (38)

and the distance between its center conductor and ground

plate, i.e., the thickness of its substrate, is given by

h=ln(r2/rl). (39)

With the method proposed by Wheeler [11], its relatively

exact expressions of characteristic impedance can be ob-

tained as follows.

1) For Narrow Strips:

(/[ (a2 + b2)(a1- b,) <1

49 ln (a, -b,)(al+bl) 11
376.687

H [

2 (U2+ b2)(a1- bl)

‘o= ~~~ ln ~ln (a2-b2)(a1+~l) 1)
1 (H (a, +b,)(tzl-bl) 2

+ 5 49 ln (a2-b2)(a1+bJ 1)
( )(1 er–l

)}
ln~+~ln~ .

–i 6,+1 r %7
(40)
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2) For Wide Strips: v

{w 11

(a, +b,)(al-bl) >1

49 ln (a, -b,)(al+bl)
w

~2 —————Y—

(/[

&/, ~ ~ ~

––7 #

376.687 (a, +b,)(al-bl) 1
r

Z.= lJj — 41

2&. 29 ln (a, - b,)(al+ b,)

H

<r–l -x -~
~

+ 0.441+ 0.082 ~ 2y z x
\~r) Fig. 9. Cross section of planar microstrip line.

( )[

Cr+l
+— 1.451

2mr The relative error of the calculations with (42) and (45) is

less than one percent.

(/[ 1 M(a, +b,)(al-bl) +094 ‘1 ~41)
-t in 2T in

(a, -b,)(al+bl) “ V. CONCLUSIONS

In the preceding sections, elliptical and cylindrical strip-
and the effective dielectrical constant of its substrate lines are rigorously transformed into asymmetric planar

6,+1 6,—1 striplines and the analysis leads to exact expressions for the
cc=— —

2+2
characteristic impedance (eqs. (8) and (11)). For the par-

ticular cases, the derived expressions (eqs. (14), (15), (17),

{[

(a, + b,)(al - b,) ‘“2
. l+~ln 1} and (18)) are both accurate and simple for calculating the

29 (a, -b,)(al+bl) “
(42) characteristic impedance, which will be, therefore, of prac-

tical interest. In the case of strip thickness greater than

In the same way, the characteristic impedance of cylin- zero, the corresponding expressions are presented. The

drical microstrip lines can be calculated as follows. derived formulas of the characteristic impedance for ellipti-

1) For Narrow Strips: cal and cylindrical rnicrostrip lines are not only simple to

calculate, but also relatively accurate.
[2rp/ln(r,/rl)] <1

376.687

H-w)]
[1]‘0 = ~{~ 9 rl

‘WWF:(S)
“(ln~+H}

[2]

[3]

(43) [4]

2) For Wide Strips:
[5]

[2q/ln(r,/rl)] >1

376.687
Z.=

26 {/()
T in u +0.441

+0082(%);%)

“(1451+1n[+nH+0941)r’44)‘9]

[6]

[7]

[8]

and the effective dielectric constant of its substrate
[10]

6, =

++:1+:1+)1-1’2 ’45)’11]
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